

# **Radiation and Risk**

#### **MRI and Ultrasound Patients**

Ultrasound and MRI exams use non-ionizing radiation, which is different from X-ray, CT, nuclear medicine, and fluoroscopy exams. There are no known long-term effects from these exams.

# Computed Tomography (CT), X-ray, Nuclear Medicine and Fluoroscopy

Computed tomography, X-ray, nuclear medicine, and fluoroscopy exams use ionizing radiation. When deciding the appropriate exam to order, your provider weighs the benefit and risk and has determined that the benefit outweighs the risk in your situation.

While the word radiation may be intimidating, it is important to remember we are exposed to radiation at all times. Radiation occurs naturally and is around us at a background level. We receive radiation exposure from the air we breathe, the soil we walk upon, the food we eat, the water we drink, and cosmic radiation. Although we know that very high levels of radiation cause damage to our cells and DNA, the risk at low levels is less definitive. We subscribe to the ALARA principle, which states that we will keep our exposures "As Low As Reasonably Achievable" to reduce the risk to our patients as much as possible.

Depending on where you live, the background radiation may be higher or lower than other areas. For example, those who live at higher altitudes receive higher background radiation exposure from higher levels of cosmic radiation. Those who travel by air also have higher exposure to cosmic radiation. Some areas of the world have higher levels of radioactive minerals in the soil and water that are, therefore, present in the food and water they consume.

The following table lists some common exams and compares the estimated effective dose \* for those exams with normal background radiation:

| Activity/Exam                                       | Average<br>Effective Dose<br>(mSv)* | Time equivalent to natural background radiation |
|-----------------------------------------------------|-------------------------------------|-------------------------------------------------|
|                                                     | 1                                   |                                                 |
| Average US background radiation (excluding medical) | 3                                   | 1 year                                          |
| Smoking 1 pack/day                                  | 0.49                                | 59 days                                         |
| Annual exposure airline personnel                   | 2.2                                 | 9 months                                        |
|                                                     |                                     |                                                 |
| Computed Tomography                                 |                                     |                                                 |
| CT Head                                             | 2                                   | 8 months                                        |

| CT Chest                                              | 7     | 2.3 years  |
|-------------------------------------------------------|-------|------------|
| CT Abdomen/Pelvis                                     | 10    | 3.3 years  |
| CT Extremity                                          | 0.1   | 12 days    |
| CT Calcium Scoring                                    | 2     | 8 months   |
| CT Angiography Head                                   | 5     | 1.7 years  |
| CT Angiography Heart                                  | 20    | 6.7 years  |
|                                                       |       |            |
| Plain Film X-rays                                     |       |            |
| Chest x-ray                                           | 0.08  | 10 days    |
| Hands/feet                                            | 0.001 | < 1 day    |
| Abdomen                                               | 0.7   | 3 months   |
| Mammogram                                             | 0.18  | 1 month    |
| Lumbar spine series                                   | 1.5   | 6 months   |
| Thoracic spine series                                 | 1     | 4 months   |
| Cervical spine series                                 | 0.2   | 1 month    |
| Skull                                                 | 0.1   | 12 days    |
| Pelvis                                                | 0.6   | 2 months   |
| Knee                                                  | 0.005 | < 1 day    |
| Shoulder                                              | 0.008 | 1 day      |
| Hip                                                   | 0.7   | 3 months   |
| Dental bitewing/image                                 | 0.005 | < 1 day    |
| Dental panoramic                                      | 0.01  | 1 day      |
| DEXA                                                  | 0.001 | < 1 day    |
|                                                       |       |            |
| Fluoroscopic Diagnostic and Interventional Procedures | 1     |            |
| Urinary studies                                       | 2     | 8 months   |
| Myelography                                           | 4     | 1.3 years  |
| ERCP                                                  | 4     | 1.3 years  |
| Arthorograms (ortho/joint)                            | 0.2   | 24 days    |
| OB/GYN                                                | 1     | 4 months   |
| Biopsy                                                | 1     | 4 months   |
| Vertebroplasty                                        | 0.6   | 2 months   |
| Peripheral vascular                                   | 5     | 1.7 years  |
| Neurologic (incl carotid)                             | 5     | 1.7 years  |
| Renal                                                 | 5     | 1.7 years  |
| Pulmonary arteriogram                                 | 6     | 24 months  |
| IR Vascular access                                    | 7     | 2.3 years  |
| Angioplasties                                         | 5     | 1.6 years  |
| Stent placement                                       | 40    | 13.3 years |
| Embolization                                          | 55    | 18.3 years |
| Cardiac arteriogram                                   | 7     | 2.3 years  |

| Cardiac percutaneous intervention | 23  | 7.7 years |
|-----------------------------------|-----|-----------|
| Cardiac EP study                  | 3.2 | 1.1 years |
| Pacemaker implantation            | 1   | 4 months  |
|                                   |     |           |
| Nuclear Medicine Scans            |     |           |
| PET/CT                            | 10  | 3.3 years |
| Neurology                         | 6.6 | 2.2 years |
| Bone Scan                         | 4   | 1.3 years |
| Lung Perfusion/Ventilation        | 2.5 | 10 months |
| Inflammation                      | 5.9 | 2 years   |
| Stress test                       | 9.7 | 3.2 years |
| GI                                | 2.9 | 1 year    |
| Genitourinary                     | 1.4 | 6 months  |

<sup>\*</sup> Effective dose is not a measured dose. It uses tissue weighting factors and sensitivities of affected organs to estimate a dose that, if the whole body received in one uniform exposure, would result in the same biological effect.

### Sources:

- 1) NCRP Report No. 184- Medical Radiation Exposure of Patients in the United States (2010)
- 2) NCRP Report No. 160- Ionizing Radiation Exposure of the Population of the United States (2009)

## **Risk of Effects**

There are two categories of effects of radiation exposure. Deterministic effects are effects that are predictable, that have been seen consistently, and are reproducible. Deterministic effects occur most frequently at high levels of radiation and not at the levels seen in diagnostic medical exams.

Stochastic effects are statistical effects, in that they are random and unpredictable. Low levels of radiation exposure, such as those levels in diagnostic imaging, fall into this category. There is no definite risk known at low levels, but several studies extrapolate risk from high levels to estimate a risk level.

Many references will estimate an excess risk of cancer of approximately 5% per Sievert (1000 mSv). Based on data through 2017 on www.cancer.gov, approximately 39.5% of men and women in the US will be diagnosed with cancer at some point in their lives. Theoretically, a CT abdomen/pelvis has an effective dose of about 10 mSv. Using this excess risk estimate, the excess risk of cancer from this exam may be 0.005%. That means the risk of cancer for a patient in the US could possibly increase from 39.5% to 39.505%.

# What can you do to reduce your radiation exposure?

- 1) **Notify your provider if you are pregnant.** A fetus is very sensitive to radiation and certain times in gestation are more sensitive than others. Some imaging is safe to do with pregnant patients with specific modifications, but it is important that all providers, from your ordering provider to the imaging technologist, are aware that you are pregnant.
- 2) **Be your own advocate.** If you feel that an exam is unnecessary or was recently performed and does not need to be repeated, speak up. Let your provider know that you are concerned about the appropriateness of your exam. He/She should be able to explain why they have ordered a particular exam and let you know if there are other alternatives that may be just as appropriate.
- 3) **Keep track of your exams**. With the advent of electronic medical records (EMR), it is easier than ever for providers to keep track of all of your exams and results in one place. While the easiest way to do this is to stick with one provider network that uses the same EMR system, you can also keep a log of your exams or ask for digital/CD copies of your exams when they are complete. Each facility has different requirements for requesting copies. You will be asked to sign a release and/or official request for each exam.

## **Bottom Line**

Diagnostic imaging typically uses very low amounts of radiation, and imaging equipment continues to improve by the day. The advances in dose reduction and image quality have increased tremendously in the last decade and continue to do so. Before imaging, the only way for a physician to see inside your body was to perform exploratory surgery. Today, the imaging options are many, and we continue to optimize our capabilities, while keeping the exposure of the patient as low as reasonably achievable. Using non-invasive or minimally-invasive imaging tools has greatly expanded the diagnostic capabilities of our medical providers. Rest assured that the staff at Community Health Network works hard to care for our patients in the safest way while providing the diagnostic tools your provider needs to provide your best care.

If you have further questions, feel free to contact our network Radiation Safety Officer Erin Bell at ebell2@eCommunity.com.

#### Resources:

https://www.imagewisely.org/Imaging-Modalities/Computed-Tomography/How-to-Understand-and-Communicate-Radiation-Risk

# www.cancer.gov

NCRP Report No. 160- Ionizing Radiation Exposure of the Population of the United States (2009)

NCRP Report No. 184- Medical Radiation Exposure of Patients in the United States (2010)